

INTRODUCTION

Objective:

- High-level path-planning for an existing mobile robot, the Tactical Unmanned Ground Vehicle (TUGV)
 - Input: High-resolution LIDAR point-cloud data with point classification
 - Output: A set of "waypoints" that the TUGV can navigate
 - Current Strategy: Graph-based

Motivation:

- Mission Planning
- Intelligence, Surveillance, and Reconnaissance (ISR)
- Area Scanning

Background:

- Two major Components:
 - Mapping/Representation (discrete vs. continuous)
 - Planning Algorithms (coupled with representation)

- Emergency Situation Response
- Warehousing/Material Handling

PROJECT DESCRIPTION AND GOALS

Qualitative Goals:

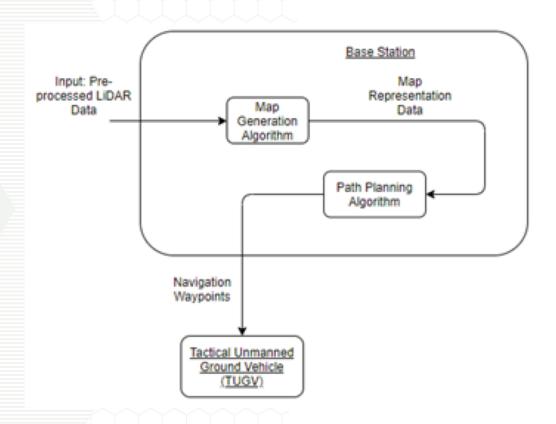
- Construct a graph model of a geographic area and assign edge weights per information extracted from LIDAR data and fundamental vehicle limitations.
- Compute the single-source, leastcost path to a specified destination.
- Translate the result of the graph search into a sequence of waypoints; Transmit the waypoints to the TUGV.

Specifications:

Base Station Parameter	Minimum Requirements
Clock Speed	2.0 GHz
RAM	8 GB
Disk/Flash Memory	256 GB
1/0	802.11n Wi-Fi USB Serial Interface

DESIGN APPROACH DETAILS

Design Approach


- Global Path planning on base station
- Discrete map representation
- Graph-based search algorithm
- Waypoints to TUGV

Codes and Standards

• LAS, Serial, Wifi

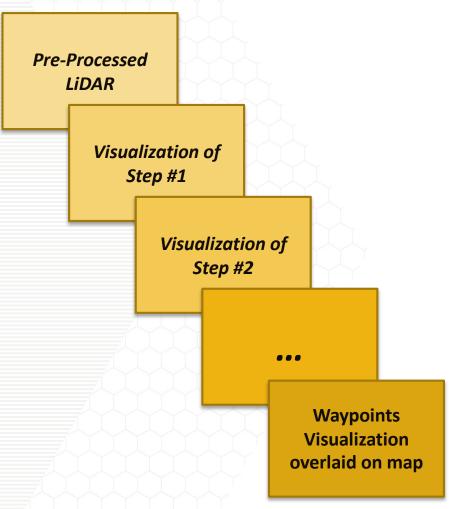
Constraints, Alternatives, Tradeoffs

- Preprocessed vs raw LiDAR
- Base Station Computation Limits
- Data Resolution

SCHEDULE/MILESTONES

- Documentation/Website maintenance
- 3 main tasks:
 - Data Acquisition, Preprocessing
 - Developing Representation
 - Implementing Path Planning Algorithm

SCHEDULE/MILESTONES



- Week 2-5: Data acquisition, preprocessing (Jacob, Antony)
- Week 2-7: Develop code for data representation (Kartik)
- Week 2-9: Implementing path planning algorithm (Alvin)
- Week 2-4: Integrating with Team B
- Week 10-11: Output generation
- Design reviews
 - Critical design review: Week 8
 - Technical readiness review: Week 12
- Week 14-15: Testing + Expo prep

PROJECT DEMONSTRATION

- Data Input
- Processing Checkpoints
- Waypoints Output
- Final Verification

MARKETING ANALYSIS

- Harris Corporation is an American Technology Company, Defense Contractor, and IT services group
- With a single customers, our product captures its intended market by following requirements requested by the direct customer
- Working with Mr. McGonagle to establish and read all technical specifications

COST ANALYSIS

- Deliverables are all softwarerelated and don't have any hardware-related costs
- Cost is solely a function of software salary

COST	AMOUNT (USD)
Alvin O'Garro Salary	\$6587.20
Jacob Jeong Salary	\$6587.20
Antony Samuel Salary	\$6587.20
Kartik Sastry Salary	\$6587.20
TOTAL	\$26,348.80

NEXT STEPS

- Coordinating GIS requirements with Mr. McGonagle
- Experimentation/Discussion of mapping and path planning options
- Detailed, system level block diagram for software