

NavX: Joint Preliminary/System Design Review

Team: Alvin O'Garro Jacob Jeong Antony Samuel Kartik Sastry

System Overview

- -Concept of Operations (CONOPS)
- -System Integration/Usage
- -Mission Level Description
- -System Block Diagram
- -Interfaces
- -Critical Success Factors

Requirements

- -Requirements Allocation
- -Performance Metrics and Analysis

Implementation Proposal

- -System Trade Offs
- -Software Design Analysis
- -Risk Analyses

Path Forward

- -Cost to Finish Implementation
- -Predicted System Performance
- -Schedule to Finish Implementation
- –Upcoming Plans

Concept of Operations (CONOPS)

• System Purpose / Objective

- Plan a 'high-level'/'global' path for an autonomous vehicle through austere terrain
 - Minimize the total distance travelled
 - Provide waypoints (sequence of coordinates) that define the path
 - Account for mobility limitations of the particular autonomous vehicle

• System User

- Operators of the autonomous vehicle
 - In ECE 4012 Design Team B
 - Outside of ECE 4012: Harris Corp. and/or potential clients

System Integration/Usage

Mission-Level Description

Inputs

- "Terrain Data"
 - · An .las file characterizing the terrain
 - Relevant components: 3D point cloud + point classification
 - Reference coordinate system + units from file metadata.
- "Robot Limitations"
 - · Maximum tilt the robot can experience
 - In direction of motion and laterally
 - · Limitations on the type of terrain the robot can drive in
 - Water, mud, etc.
- "Start, End Locations"
 - Provided either as coordinates in the reference coordinate system, or by identifying points in the .las file.
 - If an exact node is not specified, the closest node (by Euclidean distance) will be selected.
- "Connectivity Parameter"
 - The graph representation connects each node to its k-nearest neighbors. We leave integer k as an optional user parameter, with a default value to be set later.

Output

- Waypoints
 - Of the form: { $(x_0, y_0, z_0), (x_1, y_1, z_1), \dots, (x_n, y_n, z_n)$ }
 - N x 3 array of double/float 's, or a file.
 - Will communicate with Team B to transform this into the appropriate reference frame.

Start/End Points

Interfaces

• External Interfaces - With User

- Input data must adhere to the LAS standard
- Output waypoint format list of (x, y, z) tuples
 - Allows flexibility for user to localize in 2D or 3D

• Internal Interfaces - Data Exchange Between Software Components

- Parser Preprocessing Interface:
 - LAS File parsed into array of Point objects and input to classifier
- **Preprocessing Graph Generation Interface:**
 - Preprocessing maintains the representation of Points, passes to graph generation
- Graph Generation Graph Traversal Interface:
 - A graph
- Graph Traversal Waypoint Generation Interface:
 - Graph Traversal (A*) outputs a list of nodes. Waypoint Generation is a coordinate transformation.

Critical Success Factors

- What is important to the Customer:
 - Schedule: Project completed by Senior Design Expo
 - Technical: Project successfully generates and illustrates waypoints
 - Sponsor Relationship: Maintaining Harris communication for project direction
 - Systems Engineering: Maintaining System Block Diagram
 - Engineering Management: Assigning a Responsible Engineer for every requirement and subsystem

Methods of Technical Evaluation

- LiDAR data parser output validated with Geographic Information System (GIS) Software
- Employ an existing path-planning tool to verify generated path
- 3D Visualization
 - Illustrates terrain and calculated waypoints (sanity check)
 - Visually verify generated path conformance with robot limitations

(Formation of sub-tasks): See System Block Diagram

Data Parsing

- The project shall correctly read .las file and convert data fields to usable data

Point Classification Preprocessing

 The project shall remove unnavigable points (ie. canopy, water), k-nearestneighbors classification of unclassified points

Graph Generation

- The project shall generate graph representation for points

Graph Traversal (A*)

The project shall compute shortest distance path from user-specified start/end points

Waypoint Generation

- The project shall transform graph nodes into geographical coordinates

Performance Metrics and Analysis

- "How good is the path?"
 - The project shall characterize the 'deviation' of our path from an ideal or reference path
- "How long does it take to compute?"
 - Note: Important if runtime becomes critical
- Subsystem validation depicted below:

System Trade-offs

• Significant Tradeoffs

- Spatial density of data vs computation resources.
 - Higher spatial density allows finer path control and better terrain representation, but requires a more memory intensive graph.
- Path optimality vs computation time.
 - More accurate paths can be generated, but at the expense of computation time.

Software Design Analysis

• Critical Timing

• No timing constraint

Memory Utilization

- Point storage requirements alone scale linearly with k
 - Bulk of memory required
 - Points stored as (X, Y, Z, Class): 3*sizeof(float) + sizeof(int)
 - Nodes stored as (Point, Point[k]): (k+1)*sizeof(Point)
- On the order of MB for 100,000 points in .las file

• Processor Loading

- Single Core Single Thread For Now
- May parallelize graph generation in the future

Risk Analyses

- Since the project is purely software-related, all associated risks are results of software malfunctions/miscalculations.
- Risk 1: The generated waypoints guide the robot through unnavigable terrain or unseen obstacles
 User maintains option to go into "manual mode"
 - ³ Cool maintaine option to go into manaarmouo
- Risk 2: Map generation takes longer than preferred
 O User inputs a 'K' values correlating to path options

Cost to Finish Implementation

- Average software engineering salary: \$41.17/hour
- Working hours per week: 8 hours/week
- Remaining weeks: 7 weeks
- Per member salary estimate: \$2305.52
- Total cost estimate: \$9222.08

Predicted System Performance

• Following current rate of progress, system performance will reach our goals. Specifically, our process for generating waypoints will effectively provide appropriate coordinates for the navigating robot

• Performance Analysis:

- Produce Output
 - Input LiDAR data in LAS format
 - Parse LiDAR data to get point coordinates/point classification information
 - Input point array into path-planning algorithm
 - Produce waypoint Array

Evaluate

- Illustrate Waypoints using 3D Visualizer
- Overlay Waypoints on top of terrain visualization for path verification
- Compute deviation from a baseline / ideal path, if one exists

Schedule to Finish Implementation

			START																	
TASK	TASK TITLE	TASK LEAD	DATE	DURATION	WEEK 1:	WEEK 2:	WEEK 3:	WEEK 4:	WEEK 5:	WEEK 6:	WEEK 7:	WEEK 8:	WEEK 9:	WEEK 10:	WEEK 11:	WEEK 12:	WEEK 13:	WEEK 14:	WEEK 15:	WEEK 16:
NUMBER			(Week)	(weeks)	MTWRE			EMTWR	EMTWR	EMTWR	FMTWRF	MTWR		EMTWR	FMTWR	EMTWR	MTWRE	MTWRF	MTWRF	MTWRE
1	ECE 4012 Milestones											1								
1.1	Integrate Advisor Feedback	All	1	1								1 i i 🗖								
1.2	Oral Presentation	All	2	1														·		
1.3	Revise Proposal	All	2	1											_					
1.4	Revise Project Summary	All	2	1																
1.5	Website Maintenance	AO	2	15																
2	Harris Corp. Milestones																			
2.1	Preliminary Design Review	All	1	1																
2.2	Critical Design Review	All	8	1																
2.3	Technical Readiness Review	All	12	1																
2.4	PowerPoint Presentation	All	10	6																
2.5	White Paper	All	10	6																
3	Data Acquisition, Preprocessing with GIS (Lead: AS, JJ)																			
3.1	Preprocessing/Generate Point Cloud Data	JJ	2	1																
3.2	Extract Point Classification Information	JJ	2	1.5																
3.3	Acquire and Fuse Additional Data	AS	3	2																
3.4	Transfer Data to Implementation Level	AS	4	2																
3.5	Create Visualizations for Presentations	JJ, AS	14	2																
3.6	Documentation	JJ, AS	2	15																
4	Developing a Representation (Lead: KVS)																			
4.1	Develop Efficient Storage, Access, and Update Mechanisms	KVS	2	4																
4.2	Develop Code to Populate Representation	KVS	2	4																
4.3	Evaluate Against Performance Specifications, Revise	KVS	6	2																
4.4	Create Visualizations for Presentations	KVS	14	2																
4.5	Documentation	KVS	1	15																
5	Implementing Path Planning Algorithm (Lead: AO)				6															
5.1	Define Interface Between Representation and Algortihm	KVS, AO	2	1																
5.2	Develop and Refine Implementation	AO	2	8																
5.3	Evaluate Against Performance Specifications, Revise	AO	8	2																
5.4	Create Visualizations for Presentations	AO	14	2																
5.5	Documentation	AO	2	15																
6	Integration and Output (Waypoints) Generation																			
6.1	Reach Agreement with Harris Team B on Waypoint Information	All	2	3																
6.2	Produce Waypoints at Agreed Upon Resolution/Format	All	10	2																
6.3	Create Visualizations for Presentations (Block Diagram?)	All	14	2						a										
6.4	Documentation	All	2	15																
7	Testing and Expo Preparation																			
7.1	Test With Several Sets of Data	All	2	14																
7.2	Evaluate Against Performance Specifications	All	2	14																
7.3	Document Testing Results	All	2	14																
7.4	Develop Expo Presentation Materials	All	3	14				a da da da da da			and a dand	ad								

Upcoming Plans

• Logistical Milestones:

- Technical Readiness Review
- Critical Design Review
- White Paper

• Current State:

- LiDAR Data Parser and Preprocessing (Kartik Sastry)
- Terrain Analyses of LAS Data with GIS (Jacob Jeong)
- Implementing Path Planning Algorithm (Alvin O'Garro) Present
- 3-D Waypoint Visualization (Antony Samuel)
- Capstone Design Expo December 4th, 2018